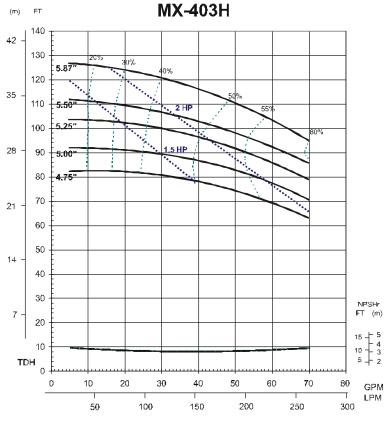


Model	MX-403H					
Mark	CV (CE)	RV (RE)				
1 Front casing	GFRPP					
2 Impeller	GFRPP					
3 Rear casing	GFRPP					
4 Magnet capsule	PP					
5 O-ring	FKM*					
6 Spindle	Alumina Ceramic					
7 Bearing	Carbon	PTFE				
8 Rear thrust	CFRPEEK					
9 Mouth ring	PTFE					
10 Thrust/Liner ring	Alumina Ceramic					
11 Lock pin	GFRPPS					

^{*} EPDM and AFLAS® O-ring also available.

Dimensions (in inches)


а	b	С	d	е	f	g	k	n	0	р	q	W	Н	L
8.19	3.15	7.87	4.72	6.06	3.27	5.94	.47	1.42	9.84	4.76	14.61	10.24	10.78	9.53

Specifications

Suction x Discharge	Maximum Discharge Pressure	Maximum Flow	Specific Gravity	Weight (less motor)	
2" x 1.5"	126 ft.	70 gpm	1.2	32 lbs	

MX-403H 3 HP

- Engineered to meet the most severe operating conditions.
- When fitted with a carbon bearing, the MX will allow for brief periods of dry running.
- The MX Series is the first resin magnet pump that uses a Split Volute Pump Casing that forms a vortex chamber.
- Self-radiating structure (patent pending) Heat dispersion holes force the liquid to circulate around the spindle and bearing.

