FEAT URES
- Bronze corrosion resistant castings
- Special cast bronze helical gears for quiet operation
- Stainless steel shafts & fasteners
- Synthetic braided compression packing (with Teflon® dispersion) is standard
- Optional lip seals are available
- Positive displacement flow
- Bronze bearing surfaces with grease fittings

MOUNTING AND DRIVE ARRANGEMENT
Pumps should be mounted on a rigid base and properly aligned with the motor. Direct drive via flexible shaft coupling is the preferred method. When a belt drive is needed, additional support is necessary to absorb the added pulley load. This can be accomplished in two ways:
1) Use the standard pump arrangement by adding an independently supported jackshaft (see figure 1 below) or
2) When space is an issue, use an optional “long shafted” pump and add a properly shimmed pillow block bearing (see figure 2).

LIQUIDS AND TEMPERATURE
Service life will be increased substantially if the liquid pumped is clean and has some degree of lubricity. These positive displacement pumps have tight tolerances. Fine abrasives like sand, silt, or powders in suspension will accelerate pump wear and reduce throughput.

Proper seal has been specified (see chemical compatibility or check factory). No carbon bearings used. When possible, flush the pump after each usage.

Temperature extremes are detrimental to service life and should be avoided. Basic metals of construction allow a temperature range of -40 to 400°F. Some lip seal elastomers have a limit of 212°F. (see engineering data or check factory). Allowing a liquid to freeze in the pump can cause damage.

SUCTION LIFT
Close tolerances and the positive pumping action make the rotary gear pump capable of lifting water on the suction side as high as 20 feet. Though gear pumps are self-priming, a foot valve is recommended. If possible, wet the gears with liquid to be pumped for the first dry start. Liquid retained in the system and gear chambers serves to “wet” the pump on subsequent starts.

CAPACITY - WATER 70°F

<table>
<thead>
<tr>
<th>R.P.M.</th>
<th>FT.HD.</th>
<th>0</th>
<th>46</th>
<th>92</th>
<th>138</th>
<th>184</th>
<th>231</th>
<th>290</th>
<th>346</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.S.I.</td>
<td></td>
<td>0</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>100</td>
<td>125</td>
<td>150*</td>
<td></td>
</tr>
<tr>
<td>HP</td>
<td></td>
<td>1.50</td>
<td>1.05</td>
<td>0.70</td>
<td>0.40</td>
<td>0.20</td>
<td>0.10</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MOTOR</td>
<td></td>
<td>0.05</td>
<td>0.08</td>
<td>0.13</td>
<td>0.15</td>
<td>0.20</td>
<td>0.24</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HP</td>
<td></td>
<td>3.38</td>
<td>2.14</td>
<td>1.89</td>
<td>1.64</td>
<td>1.39</td>
<td>1.15</td>
<td>0.70</td>
<td>0.32</td>
</tr>
<tr>
<td>MOTOR</td>
<td></td>
<td>0.06</td>
<td>0.10</td>
<td>0.17</td>
<td>0.20</td>
<td>0.28</td>
<td>0.35</td>
<td>0.44</td>
<td>0.53</td>
</tr>
<tr>
<td>HP</td>
<td></td>
<td>4.00</td>
<td>2.74</td>
<td>2.38</td>
<td>2.02</td>
<td>1.64</td>
<td>1.39</td>
<td>1.15</td>
<td>0.70</td>
</tr>
<tr>
<td>MOTOR</td>
<td></td>
<td>0.10</td>
<td>0.16</td>
<td>0.27</td>
<td>0.38</td>
<td>0.43</td>
<td>0.55</td>
<td>0.67</td>
<td>0.80</td>
</tr>
<tr>
<td>HP</td>
<td></td>
<td>4.85</td>
<td>3.60</td>
<td>3.45</td>
<td>3.10</td>
<td>1.84</td>
<td>1.35</td>
<td>0.70</td>
<td>0.32</td>
</tr>
<tr>
<td>MOTOR</td>
<td></td>
<td>0.15</td>
<td>0.25</td>
<td>0.33</td>
<td>0.45</td>
<td>0.55</td>
<td>0.68</td>
<td>0.85</td>
<td>1.00</td>
</tr>
<tr>
<td>HP</td>
<td></td>
<td>6.67</td>
<td>5.42</td>
<td>5.16</td>
<td>4.89</td>
<td>3.64</td>
<td>2.53</td>
<td>1.50</td>
<td>0.50</td>
</tr>
<tr>
<td>MOTOR</td>
<td></td>
<td>0.20</td>
<td>0.30</td>
<td>0.45</td>
<td>0.58</td>
<td>0.60</td>
<td>0.85</td>
<td>1.05</td>
<td>1.25</td>
</tr>
<tr>
<td>HP</td>
<td></td>
<td>7.25</td>
<td>6.20</td>
<td>5.75</td>
<td>5.30</td>
<td>4.05</td>
<td>3.25</td>
<td>2.60</td>
<td>1.85</td>
</tr>
<tr>
<td>MOTOR</td>
<td></td>
<td>0.30</td>
<td>0.45</td>
<td>0.65</td>
<td>0.80</td>
<td>0.95</td>
<td>1.10</td>
<td>1.25</td>
<td>1.40</td>
</tr>
</tbody>
</table>

H.P. = Actual Horsepower Motor = Convenient Fractional Size
G.P.M. = Gallons per Min. P.S.I. = Lbs. Per Square Inch Pressure
R.P.M. = Rev. per Min. Ft. Hdl. = Equiv. Press. in Ft of Water

*For pressures over 100 psi, the above selections are suitable for pumping fluids with lubricity (e.g. oils, polymers). Service life will decrease for fluids without lubricity (e.g. water, solvents).
EXPLODED VIEW AND PARTS LIST

The pump by-pass is not intended to be a metering or flow control device. Its main purpose is to function as a pressure relief when the desired set point is exceeded, overheating can occur within 5 -10 minutes if the discharge line is completely shut off for extended periods.

Reversing rotation reverses the “IN” and “OUT” ports and the location of the by-pass ports have to be reversed.

The by-pass valve is factory set at 50 p.s.i. To increase the setpoint, turn the by-pass valve adjusting screw in a clock-wise direction.

BRONZE PEDESTAL ROTARY GEAR PUMPS

BRONZE BEARINGS

MODELS N3000L N3000LR SERIES

Viton® or equivalent FKM will be used. Viton® is a registered trademark of DuPont Dow Elastomers. Teflon® or equivalent PTFE will be used. Teflon® is a registered trademark of DuPont.

BY-PASS AND ROTATION

Repair Kits contain items 2, 4, 5 and 6. Items 18 and 19 not shown above.

![Diagram of pump components]

DIMENSIONS

DIMENSIONS N3000L, N3000LR3 & N3000LR15

DIMENSIONS N3000L, N3000LS3 & N3000LS15

1/2002 Specifications are subject to change without notice.

www.oberdorfer-pumps.com PHONE 800-448-1668; (315) 437-0361 FAX (315) 463-9561